
Intelligence in Action: AI Driven
Networks - NWDAF

Authors:
Eduardo Lopes, João Neto, Jorge Domingues,

Hugo Ribeiro, Rodrigo Abreu

Supervisors:
Prof. Rui Aguiar, Rafael Direito, Rafael Teixeira

Informatics Project 2024/2025

June 2025

Acknowledgements

We would like to express our gratitude to the supervisors who contributed to the development of this
project.

We thank Prof. Rui Aguiar for his coordination role and for promoting a stimulating research
environment that allowed this project to take shape. We also sincerely thank Rafael Direito for his
close guidance on the network architecture and integration aspects, and Rafael Teixeira for his valuable
support in the design and implementation of the machine learning components.

Their expertise, availability, and constructive feedback were essential to the progress and quality of
this work.

1

Keywords

MLOps, 5G, NWDAF, AI, API

Abstract

Modern networks have evolved from static infrastructures into dynamic, intelligent, and adaptive
ecosystems. In the context of 5G and Beyond 5G, networks must efficiently manage vast volumes of
heterogeneous data, accommodate a wide range of services, and meet stringent requirements for reliability,
scalability, and low latency. These demands introduce significant operational challenges, including service
degradation due to traffic surges, increased latency, and packet loss, all of which can compromise the
quality of experience for end users. Moreover, the physical expansion of infrastructure remains costly
and time-consuming.

To address these challenges, this work proposes a modular and scalable Machine Learning Operations
(MLOps) pipeline designed to integrate Machine Learning (ML) and automation into network operations.
The architecture enables real-time data collection, processing, and intelligent decision-making, forming
the foundation for self-optimizing, self-healing network functions. By embedding ML models directly into
the network workflow, the system enables continuous learning and adaptation to evolving traffic patterns
and usage behaviors.

The pipeline is designed to support a wide range of use cases, including performance forecasting,
traffic classification, and anomaly detection. To validate the implementation, we apply the pipeline to
an anomaly detection scenario, where it is tasked with identifying various network attacks within mixed
traffic flows. This use case serves as a proof of concept, demonstrating the system’s ability to distinguish
between benign and malicious activity using ML models. The successful application of the pipeline in
this context highlights its effectiveness in real-world conditions and underscores its potential to enhance
network resilience, reduce operational overhead, and ensure consistent quality of service across dynamic
and demanding environments.

2

Contents

1 Introduction 4

2 Background 5
2.1 5G Network Context . 5
2.2 ML Context . 6

3 State of the Art 8

4 Proposed Solution 9
4.1 Objectives & Expected Results . 9
4.2 Actors . 9
4.3 Identified Use Cases . 9
4.4 Use Case . 10

4.4.1 Scenario . 10
4.4.2 Dataset . 11

4.5 System Requirements . 12
4.5.1 Functional Requirements . 12
4.5.2 Non-functional Requirements . 14

4.6 Architecture . 15
4.7 Docker Deployment: Containerization and Orchestration of the Pipeline 18
4.8 Data Flow . 19

5 Results 26
5.1 Execution 1 . 27
5.2 Execution 2 . 30

6 Discussion 32
6.1 MLOps Pipeline . 32
6.2 5G-Core Integration . 32

7 Future Work 34

8 Conclusion 35

3

1 Introduction

As the global demand for seamless connectivity, high-speed data transmission, and real-time services
continues to grow, network infrastructures must evolve to meet increasingly complex performance, scal-
ability, and reliability requirements. These stringent requirements cannot be supported by traditional
static network architectures are no longer sufficient to support the dynamic and heterogeneous demands
of modern digital ecosystems. In this context, the fifth generation of mobile networks (5G) and Beyond-
5G (B5G) networks represent a significant technological leap, introducing capabilities such as ultra-low
latency, massive machine-type communications, and enhanced mobile broadband. However, to fully un-
lock the potential of these next-generation networks, a shift towards intelligent, data-driven management
and automation is essential.

The complexity of managing modern networks, ranging from physical and virtual infrastructure to
service orchestration, has reached a point where manual configuration and static policies can no longer
guarantee optimal performance. To address this, the integration of Machine Learning (ML) techniques
and Machine Learning Operations (MLOps) into network architectures is emerging as a critical approach.
These technologies enable the network to continuously learn from operational data, predict future states,
and adapt in near-real time, ultimately leading to self-managing and self-optimizing networks.

One of the central frameworks supporting this paradigm shift is the Network Data Analytics Function
(NWDAF), introduced as part of the 3GPP 5G core (5GC) specification. NWDAF enables the collection,
processing, and exposure of analytical insights about network behavior through standardized APIs. These
insights can then be used to make data-driven decisions, such as dynamic resource allocation, anomaly
detection, load forecasting, and quality of service (QoS) optimization.

This project is situated within this evolving landscape. It is motivated by the urgent need to design a
modular and scalable architecture that leverages ML, automation, and robust data pipelines to enhance
5G network operations. The architecture must support end-to-end functionality, from data ingestion
and preprocessing to model training and inference, while enabling real-time communication between
network components via standardized APIs and streaming middleware. By doing so, the system can
enable predictive insights and automation decisions that enhance operational efficiency and network
adaptability.

This need is further amplified by the operational challenges faced by network operators, who are under
pressure to reduce operational costs, accelerate service delivery, and minimize downtime. Intelligent
network automation aligns directly with these objectives. By embedding ML into the network fabric, the
system can identify patterns in data that would be difficult or impossible for humans to detect in real
time.

Ultimately, the broader motivation is to implement a proof of concept (PoC) of what is envisioned to
be an NWDAF. Rather than aiming for a fully autonomous system from the start, the focus is on exploring
how such a component can be designed and integrated, while identifying key challenges, limitations, and
opportunities for improvement. Through this project, we aim to gain hands-on experience and generate
insights that can inform future development efforts in intelligent network management.

The remainder of this report is organized as follows: Section 2 provides the necessary background
on 5G network architecture and the principles of MLOps, setting the technical foundation for the pro-
posed work. Section 3 reviews the state of the art, highlighting relevant research and identifying existing
gaps. Section 4 introduces the proposed solution, detailing the objectives, use case selection, system
requirements, and architectural components. Section 5 presents the results obtained from implementing
and validating the system. Section 6 discusses the challenges encountered, design decisions made, and
insights gained during development. Section 7 outlines future work and potential improvements to ex-
tend the system’s capabilities. Finally, Section 8 concludes the report with a summary of the project’s
contributions and outcomes.

4

2 Background

2.1 5G Network Context

The 5G represents a fundamental shift from traditional static infrastructures toward intelligent, adaptive,
and software-defined architectures. At the heart of this transformation is the 5GC Network (shown in
Figure 1), which acts as the central nervous system of the entire system. It manages authentication,
mobility, policy enforcement, security, billing, and (most critically for this project) data routing and
exposure. Compared to previous generations, the 5GC is designed to be more modular, cloud-native,
and service-oriented, enabling it to support both consumer-centric and industrial use cases with high
throughput and ultra-low latency demands [1].

Figure 1: 5G Core Architecture.
Source: Dell Technologies Info Hub (2023), The 5G Core Network Demystified. Available at: https:

//infohub.delltechnologies.com/en-us/p/the-5g-core-network-demystified/

The 5GC’s architecture is built on a Service-Based Architecture (SBA), in which individual Network
Functions (NFs) are decomposed into distinct microservices. These include the Access and Mobility
Management Function (AMF) for user registration and mobility handling, and the Session Management
Function (SMF), which manages session establishment and communication tunnels between the access
network and the User Plane Function (UPF). The UPF is responsible for packet routing and inspection,
QoS enforcement, and external data network interconnection. Together, SMF and UPF form the backbone
of data path management in the 5GC.

Other key components include the Policy Control Function (PCF) for rule enforcement across slices
and services, the Network Repository Function (NRF) for NF discovery and registration, and the Network
Exposure Function (NEF), which handles secure exposure of network capabilities and data to external
applications. These functions are supported by centralized data services such as the Unified Data Reposi-
tory (UDR) and Unified Data Management (UDM) for storing and accessing subscriber and policy-related
data. The Authentication Server Function (AUSF) manages user authentication, and the Network Slice
Selection Function (NSSF) aids in selecting the appropriate network slice for each user or service. The
Application Function (AF) provides application-layer capabilities and can influence network behavior by
interacting with NEF and PCF.

This highly modular structure enables 5G networks to support advanced features like network slicing,
edge computing, and massive Internet of Things (IoT), which are crucial for modern digital services. The
core’s flexibility allows operators to scale from small private deployments to massive national infrastruc-
tures.

In this context, the NWDAF emerges as a pivotal component in the 5GC architecture, introduced
by 3GPP to meet the increasing demands for intelligent and automated network management. NWDAF
is a standardized function designed to collect, analyze, and expose analytics data (both real-time and
historical) to other NFs and external entities. Its primary objective is to enable closed-loop automation
by providing actionable insights that drive autonomous decision-making across the network.

Functionally, NWDAF operates as an analytics engine within the SBA of 5G, supporting multiple use
cases such as anomaly detection, mobility pattern analysis, user experience prediction, and network slice

5

https://infohub.delltechnologies.com/en-us/p/the-5g-core-network-demystified/
https://infohub.delltechnologies.com/en-us/p/the-5g-core-network-demystified/

performance monitoring. It interfaces with various NFs, such as the AMF, SMF, and PCF, to gather
network metrics and expose aggregated insights through standardized APIs. This data can be consumed
by internal functions or exposed externally to application functions (AFs) and third-party systems via
the NEF, enabling intelligent orchestration and service optimization.

NWDAF supports both statistical (batch) analytics and event-driven (streaming) analytics, making
it suitable for both long-term trend analysis and real-time operational responses. By leveraging advanced
data analytics and potentially ML models, NWDAF enables the network to detect performance anomalies,
anticipate failures before they impact service quality, and dynamically adapt to traffic changes. This plays
a critical role in supporting predictive maintenance, adaptive QoS provisioning, and the self-optimization
capabilities envisioned for Beyond 5G networks.

Ultimately, NWDAF represents a foundational step toward the automation and intelligence goals of
5G, aligning network operations with MLOps principles by integrating data pipelines, model inference,
and feedback loops within the core infrastructure. Its introduction reflects the industry’s shift toward
AI-driven, data-centric networking, positioning it as a key enabler for future network evolution.

2.2 ML Context

As modern networks increase in complexity and scale, the volume of telemetry data and operational
metrics they generate grows exponentially. Traditional approaches to network management (primarily
rule-based or manually configured) are no longer sufficient to ensure real-time adaptability, reliability, or
scalability. In this context, ML becomes a powerful tool for enabling data-driven automation, allowing
networks to dynamically respond to changing conditions with minimal human intervention. MLOps has
emerged as a discipline that addresses these challenges by applying principles from DevOps and software
engineering to the ML domain.

However, leveraging ML in production environments, particularly in critical systems like 5G networks,
requires more than just model development. It requires a structured and automated lifecycle management
process for ML workflows, known as MLOps. MLOps draws inspiration from DevOps practices in software
engineering and extends them to the domain of data science, enabling continuous integration, continuous
delivery, observability, and version control of models and data (shown in Figure 2).

Figure 2: MLops Lifecycle

The ML lifecycle is a continuous, iterative process that spans from initial data preparation to post-
deployment monitoring. As shown in Figure 2, it begins with data preparation and exploratory data
analysis (EDA), which are essential for understanding and shaping the dataset. This is followed by
model development and training, where algorithms are iteratively refined and validated. After review
and testing, models are deployed to production environments. Continuous monitoring ensures models
remain effective over time, enabling feedback-driven retraining and improvement. This cyclical structure
supports adaptability and long-term performance in dynamic, data-driven systems.

An MLOps pipeline is a structured and automated framework that manages the end-to-end lifecycle
of ML workflows, from data collection and preprocessing to model training, deployment, monitoring, and
retraining. Its goal is to ensure that ML models are delivered in a reproducible, scalable, and maintainable
way, while supporting continuous integration (CI), continuous deployment (CD), and continuous training
(CT). A mature MLOps pipeline not only accelerates experimentation and iteration cycles but also en-

6

forces automation, governance, and traceability, enabling organizations to deploy models into production
with confidence and efficiency.

In the context of this project, MLOps is central to the development of an intelligent, modular, and
scalable architecture that integrates seamlessly with 5G and B5G network components. The pipeline we
designed spans several stages, each of which contributes to the overall goal of enabling predictive and
adaptive network behavior.

1. Data Ingestion Data ingestion is the entry point of a machine learning pipeline, particularly in
network environments where telemetry and performance metrics are continuously generated. This stage
involves the real-time collection of high-volume data streams, ensuring timely and scalable data flow into
the system.

2. Data Preprocessing Raw data often contains noise, missing values, and inconsistencies. The pre-
processing stage involves cleaning, normalizing, and enriching the data to ensure quality and consistency.
It also includes feature extraction, transforming raw inputs into meaningful attributes that can enhance
model performance.

3. Model Training and Evaluation This stage focuses on developing predictive models based on the
processed data. Typical objectives include detecting anomalies, forecasting failures, or classifying events.
The training process incorporates model validation techniques and evaluation through metrics such as
precision, recall, and F1-score to ensure effectiveness and generalizability.

4. Model Deployment and Inference Once trained, models are prepared for deployment in a
production environment. This involves exposing them through inference services that can handle real-
time data and generate predictions or classifications. These outputs are then used to support automated
or semi-automated decision-making processes.

5. Continuous Integration/Deployment (CI/CD) CI/CD practices are applied to automate test-
ing, validation, and deployment of model updates. This facilitates rapid iteration while maintaining
system reliability and minimizing the risk of disruption when models are replaced or improved.

6. Monitoring and Observability Monitoring is essential for tracking model performance and detect-
ing issues such as data drift or concept drift over time. Observability tools enable the implementation of
feedback loops, allowing for ongoing evaluation and retraining of models to adapt to changing conditions
and maintain accuracy.

7

3 State of the Art

In recent years, the integration of ML into 5G network operations has attracted significant attention
from both academia and industry. Several works have explored the potential of applying ML to enhance
network intelligence, with a particular focus on the NWDAF, a key enabler of data-driven automation in
5G systems. For example, Mekrache et al. [5] propose combining NWDAF with ML techniques to detect
abnormal traffic in B5G environments, while Nisha et al. [7] introduce a smart data analytics system
that leverages ML algorithms to improve communications in 5G networks. Similarly, Ferreira et al. [3]
present a demonstration system to improve network performance by analyzing function and slice loads.

Although these contributions highlight promising ML-based capabilities for network optimization and
anomaly detection, they do not address the broader lifecycle challenges associated with ML in production
systems. In particular, none of the referenced works explores CI/CD of ML models or strategies for
automatic retraining in response to evolving data patterns. This represents a critical gap, as real-world
deployments require robust MLOps practices to ensure model accuracy and relevance over time. The
absence of mechanisms to detect and mitigate model drift (where the data distribution changes and
affects model performance) further limits the practical applicability of these solutions.

Another key shortcoming across [3], [5], and [7] is the lack of end-to-end architectural considerations
that demonstrate how ML can be operationalized within NWDAF-like systems. While theoretical models
and simulations are well-explored, there remains a gap in proof-of-concept implementations that bridge
the divide between research and real-world deployment of AI-driven NFs.

In terms of feature extraction and data preparation for ML, Sarhan et al. [8] highlight the importance
of standardized and informative network features for intrusion detection. Their work points to nProbe as
an efficient and widely adopted flow exporter capable of generating rich NetFlow/IPFIX features, which
are suitable for ML-based traffic analysis. Despite its potential, existing research does not incorporate
nProbe into a fully operational ML pipeline integrated with NWDAF architectures, leaving open questions
about how such tools can be leveraged in a modular and scalable way.

In summary, while recent literature demonstrates the value of integrating ML into 5G analytics, it
often stops short of addressing the deployment, lifecycle management, and modularization challenges
required for real-world applications. This gap motivates the design of architectures that operationalize
MLOps within NWDAF-compatible systems using technologies like nProbe for data enrichment and
Kafka for real-time event streaming.

8

4 Proposed Solution

4.1 Objectives & Expected Results

The primary objective of this project is to design and implement a scalable and modular data analytics
architecture tailored for 5G networks, with a strong focus on integrating ML and MLOps practices
into the core of network intelligence. This architecture aims to collect and analyze data exposed by
5GC components, enabling data-driven insights, anomaly detection, and automation of network decision-
making processes. Central to this effort is the development of a PoC system that demonstrates the
feasibility of using machine learning to detect anomalies and generate insights from 5GC data. The PoC
will validate the system’s ability to process real or simulated data in near real time, trigger relevant alerts
or actions based on ML outputs, and provide meaningful visualizations to operators. This measurable
outcome will help assess how ML-driven analytics can contribute to better network performance, resource
optimization, and service reliability.

To achieve these goals, the project aims to deliver several concrete outcomes. First, a collection
of representative use cases will be defined, highlighting how ML-based intelligence can be leveraged to
identify performance bottlenecks, detect anomalies, and support real-time adaptive optimizations. These
use cases will guide the architectural design and system requirements.

Second, a robust data analytics pipeline will be implemented, ensuring seamless communication be-
tween its services (from raw data collection and processing to model training and inference). The ar-
chitecture will include integration with key 5G components, ensuring compatibility with the SBA and
compliance with 3GPP standards, particularly in the context of NWDAF-like behavior.

Third, the project will involve the development and integration of ML models capable of processing
network data to support classification tasks, such as anomaly detection. These models will be deployed
through an end-to-end MLOps pipeline, supporting retraining and continuous delivery of intelligence to
the network in a reliable and automated manner.

Finally, the architecture will include mechanisms for deployment, monitoring, and visualization, pro-
viding a user-friendly interface for network operators to interact with the system and gain insights into the
network’s performance and behavior. Visualization tools will support real-time observability of inference
results.

4.2 Actors

The target clients for this software are telecommunications companies, particularly those offering 5G
network services and seeking to enhance the efficiency and self-optimization of their infrastructure. The
primary objective is to provide a system that enables networks to autonomously optimize their perfor-
mance, minimizing the need for manual intervention while improving overall service quality and user
experience.

To achieve this, we have identified two key actors:

• Network/Service Provider

– The primary user of the system, responsible for implementing and managing network opti-
mization processes.

• Service Client

– The end-user or customer who benefits indirectly from the improved network performance
resulting from the system’s optimizations.

In this model, the network/service provider interacts directly with the system, while service clients
experience the benefits of enhanced network efficiency and automation.

4.3 Identified Use Cases

The use case diagram presented in Figure 3 shows several possible use cases that could be part of the
system, involving both the client and the network/service provider. These include things like smart traffic
routing, fault prediction, and energy efficiency. However, due to limited resources and a tight schedule,
we decided to focus on implementing just one of these use cases for this project. The other use cases
were left out of scope for now but could be considered for future development.

9

Figure 3: Use Case Diagram

4.4 Use Case

So, we chose to explore the Anomaly Detection and Fault Prediction use case, more specifically, focusing
primarily on detecting potential attacks in real time, and then identifying them. The system focuses on
recognizing malicious activity as it occurs and classifying the type of attack to support a faster and more
accurate response.

In addition to relying on historical trends, the system also processes real-time network data to actively
monitor for threats and faults, aiming to improve overall network reliability and security.

4.4.1 Scenario

The following scenario illustrates how the chosen use case could be applied in a real-world environment,
specifically within a smart factory setting.

A smart factory relies on thousands of IoT sensors and actuators to control and monitor operations.
These include environmental sensors that monitor temperature, humidity, and air quality to ensure
product quality, as well as automated machines that perform real-time assembly of products.

Suddenly, the system detects an abrupt increase in data traffic from temperature sensors, which could
indicate a malfunction or an ongoing cyberattack. If not addressed, this could damage equipment or pose
risks to the safety of nearby workers.

In addition, the system also identifies multiple failed authentication attempts by an unknown device
trying to access the robotic assembly line control system. This raises concerns about possible intrusion
that could compromise the manufacturing process and disrupt production.

In response, the monitoring system triggers alerts, identifying attacks in real time and classifying them
to support appropriate countermeasures, such as isolating affected devices, blocking access attempts, and
maintaining stable operations.

This scenario is directly related to the use case of anomaly detection and fault prediction,
allowing the factory to detect attacks as they occur, respond quickly, and maintain operational safety.

10

4.4.2 Dataset

The dataset we found to test our use case was the UNSW-NB15 dataset [6], developed by the Australian
Centre for Cyber Security (ACCS) at University of New South Wales (UNSW) Canberra. It was specifi-
cally created to support research in network intrusion detection, offering a modern and realistic collection
of network traffic that includes both normal behavior and a wide range of malicious activity.

The dataset was generated using the IXIA PerfectStorm tool, which emulated realistic network traffic
scenarios in a controlled environment. This traffic was captured in raw packet format (pcap), providing a
complete view of network activity at the packet level. This is the same format used in our system, which
analyzes individual packets to detect and classify attacks.

Alongside the pcap files, ground truth labels are provided, which map each connection to a corre-
sponding attack type or mark it as normal. This allowed us to process the raw traffic directly, extract
relevant features, and evaluate the performance of our attack detection and classification system.

The dataset includes a variety of attack categories such as Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, and Worms. This diversity makes it highly suitable for testing
intrusion detection systems in both binary and multiclass classification tasks.

For the data processing phase, we referred to the updated NF3 version of the dataset described in [4],
which includes a uniform set of standard flow features enriched with temporal fields. These datasets
are derived from well-known NIDS benchmarks and are structured to facilitate consistent training and
evaluation of ML models across different attack scenarios.

The selected features cover essential aspects of network flow behavior, including addressing, protocol
metadata, packet and byte counts, retransmission statistics, and timing indicators. Temporal precision
is supported through millisecond-level timestamps for the start and end of each flow. This comprehen-
sive selection balances efficiency and expressiveness while aligning with the practical needs of intrusion
detection.

The full list of features used in this study is provided below:

• FLOW_START_MILLISECONDS, FLOW_END_MILLISECONDS – Timestamps (in milliseconds) indicating
when the flow started and ended.

• IPV4_SRC_ADDR, IPV4_DST_ADDR – Source and destination IPv4 addresses.

• L4_SRC_PORT, L4_DST_PORT – Source and destination transport layer (L4) port numbers.

• PROTOCOL – Transport protocol (e.g., TCP, UDP).

• L7_PROTO – Application-layer protocol identifier (e.g., HTTP, DNS).

• IN_BYTES, OUT_BYTES – Number of bytes sent in each direction.

• IN_PKTS, OUT_PKTS – Number of packets sent in each direction.

• TCP_FLAGS, CLIENT_TCP_FLAGS, SERVER_TCP_FLAGS – Aggregated TCP flag values seen in the flow
(e.g., SYN, ACK).

• FLOW_DURATION_MILLISECONDS – Duration of the flow in milliseconds.

• DURATION_IN, DURATION_OUT – Duration of client-to-server and server-to-client traffic.

• MIN_TTL, MAX_TTL – Minimum and maximum Time-To-Live (TTL) values observed.

• LONGEST_FLOW_PKT, SHORTEST_FLOW_PKT – Byte sizes of the longest and shortest packets in the
flow.

• MIN_IP_PKT_LEN, MAX_IP_PKT_LEN – Minimum and maximum IP packet lengths observed.

• RETRANSMITTED_IN_BYTES, RETRANSMITTED_IN_PKTS, RETRANSMITTED_OUT_BYTES, RETRANSMITTED_-
OUT_PKTS – Counts of retransmitted bytes and packets in each direction.

• SRC_TO_DST_AVG_THROUGHPUT, DST_TO_SRC_AVG_THROUGHPUT – Average throughput in bits per sec-
ond for each direction.

• NUM_PKTS_UP_TO_128_BYTES, NUM_PKTS_128_TO_256_BYTES, NUM_PKTS_256_TO_512_BYTES, NUM_-
PKTS_512_TO_1024_BYTES, NUM_PKTS_1024_TO_1514_BYTES – Distribution of packets based on size
ranges.

11

• TCP_WIN_MAX_IN, TCP_WIN_MAX_OUT – Maximum TCP window size in each direction.

• ICMP_TYPE, ICMP_IPV4_TYPE – ICMP type and subtype for flows using ICMP.

• DNS_QUERY_ID, DNS_QUERY_TYPE, DNS_TTL_ANSWER – DNS transaction ID, query type, and response
TTL for DNS flows.

• FTP_COMMAND_RET_CODE – FTP server response code for flows using the FTP protocol.

• Label – Binary classification label (0 = benign, 1 = malicious).

• Attack – Multi-class label indicating specific attack type (e.g., DoS, Backdoor).

To provide context on dataset composition, Table 1 summarizes the number of benign and malicious
flows per dataset. Table 2 gives a detailed breakdown of flows by attack class, enabling both binary and
multi-class classification tasks.

Dataset Malicious Flows Benign Flows Total Flows

NF3-UNSW-NB15 127,693 2,237,731 2,365,424

Table 1: Summary of Flows in the NF3-UNSW-NB15 Dataset

Attack Type Flow Count

DoS 5,980
Reconnaissance 17,074
Backdoor 1,226
Fuzzers 33,816
Exploits 42,748
Analysis 2,381
Generic 19,651
Shellcode 4,659
Worms 158

Benign 2,237,731

Table 2: Distribution of Attack Types in the NF3-UNSW-NB15 Dataset

4.5 System Requirements

This section defines the specifications for the developed system’s requirements, which were gathered
through weekly meetings with project supervisors and collaborative brainstorming sessions involving all
group members. Since the project followed an agile methodology, the requirements list was continuously
refined to accommodate evolving objectives and emerging challenges.

The requirements are categorized into two main groups: general pipeline requirements and use case
specific requirements.

4.5.1 Functional Requirements

The system’s functional requirements are organized into several categories according to the main aspects
of the implementation.

Data Collection

• The system should receive the network data via REST API call.

• The system data receiver should support JSON data format.

• The system should use the message bus to integrate the received network data in the pipeline.

12

Data Processing

• The system should continuously process the raw network data and extract features.

• The system should clean irrelevant fields from the data.

• The system should use ground truth information to label received data accordingly.

• The system should use the message bus to continuously send the processed data to other pipeline
components.

Data Storage

• The system should store ground truth data in a time series database.

• The system should store raw network data in the corresponding time series database.

• The system should store processed network data in the data warehouse.

• The system should store inference data in the corresponding time series database.

ML

• The system should apply multiple ML algorithms on training data.

• The system should apply supervised learning techniques using processed data labels.

• The system should test and evaluate all the ML models after training and select the best one to be
deployed.

• The system should have a model deployment mechanism.

• The deployed model should perform inference on real-time processed network data.

• The system should automate continuous training, testing, and deployment as new volumes of train-
ing data arrive.

• The system should allow manual training via API call.

• The system should return the respective model training information via callback, after manual
training request execution.

Data Visualization

• The system should have a dashboard to visualize pipeline network metrics.

• The dashboard should contain relevant information resulting from network data analytics proce-
dures.

• The dashboard should contain model inference results on live network data.

5G Integration

• The system should collect and expose network data, structuring the payload accordingly with
respective 5G NFs on API calls.

• The system should be able to subscribe to event streams from 5GC components via standardized
interfaces.

• The system should support the injection of synthetic 5G data for model training purposes.

• The system should support high-precision timestamping to ensure data alignment across 5G com-
ponents.

13

Use Case Specific Functional Requirements

• The system should be able to extract features from raw network data.

• The system should have two types of ML algorithms, to train to respectively, identify and classify
anomalies.

4.5.2 Non-functional Requirements

The system must meet the following non-functional requirements:

Compliance & Standards

• The system should comply with 3GPP specifications for 5G data collection and exposure.

Scalability

• The system must handle increasing volumes of network data without performance loss.

• The architecture should support the deployment of multiple ML models in parallel.

Performance

• The model inference engine should handle 100 predictions per second with no performance degra-
dation.

• The dashboard should update metrics with a maximum delay of 30 seconds.

• To support real-time analytics, data processing should have minimal latency and a response time
below 1 millisecond.

Security

• The system must ensure that all data is kept on-premise.

Maintainability

• The system codebase should follow clean coding principles and modular architecture to ease future
updates.

• The system must allow modules to be replaced by others with higher performance, with minimal
impact on other modules.

• The system must be easily adaptable for deployment in various network environments.

• The system must follow good MLOps practices, guaranteeing modularity, reproducibility, and full
automation of the ML lifecycle.

Reliability & Availability

• If a component fails the rest of the system must remain operational.

• All data should be persisted in respective databases.

Interoperability

• The system must be interoperable, providing APIs and adopting standardized ML frameworks.

Logging and Monitoring

• The system should generate structured logs if errors occur for all pipeline stages.

Use Case Specific Non-Functional Requirements

• The binary model should reach an F1 score percentage above 90%.

• The classification model should reach an F1 score percentage above 90%.

14

4.6 Architecture

The developed system follows a modular and event-driven architecture designed to support real-time
analytics on 5G network data. It is structured to ensure scalability, flexibility, and seamless integration
with modern network environments. The architecture was designed to reflect the lifecycle of network
data (from initial collection to final insight delivery) while decoupling components to allow indepen-
dent development, maintenance, and evolution of each module. The pipeline is designed to operate in
near real-time, supporting high-throughput scenarios and low-latency requirements typically found in
telecommunications environments. It also provides support for both automatic and manual ML work-
flows, ensuring the solution remains adaptable to evolving analytic needs. This architecture supports the
integration of simulated and real data sources, providing a flexible testbed for development and validation.
By adopting open technologies and clean interface definitions, it ensures interoperability, maintainability,
and compatibility with the standard 5G infrastructure.

Concerning the system’s technology model, shown in Figure 4, the following technologies have been
identified: Python, Kafka, FastAPI, Scapy, Pandas, nProbe, Scikit-learn, Imbalanced-learn, ClickHouse,
InfluxDB, and chronograf.

Figure 4: System Architecture

Event-driven middleware: Kafka

The primary way to ensure the pipeline’s modules can communicate is by using an event-driven
middleware, where the modules can publish data on the appropriate topics. This way, all communication
through the middleware is asynchronous. With this approach, every time new data is available to be used
by a certain module, it will consume the data in the corresponding topic automatically (the middleware
moves the data as close to real-time as possible). Therefore, the middleware acts as an intermediary
between different pipeline components, assuring that the modules are decoupled, which is fundamental
to ensure reduced interdependence between the system’s components and reliable event processing (very
important for our pipeline). This separation enhances the system’s adaptability, maintainability, and
scalability by allowing individual parts to be modified without significantly impacting others.

So, the middleware was implemented using Kafka. We chose this technology because it is designed
to handle large volumes of data, has low latency, and is highly used in event-driven architectures (ar-
chitecture shown in the previous figure). Kafka is also excellent for transmitting data in real-time for
ML applications such as forecasting and model monitoring. This technology is great for environments
where data size growth is high, as it can be scaled horizontally and guarantees message durability (data
retention for a defined time). The architecture of this technology also offers great fault tolerance, which
is important for our solution, since no message sent between services must be lost.

APIs: FastAPI

15

In our proposed architecture, both APIs and Kafka play essential and complementary roles in enabling
reliable, scalable, and modular communication between the various components of the MLOps pipeline.
As the system is designed to operate in real-time and handle high-throughput network data, Kafka serves
as a robust, event-driven middleware for decoupling services and efficiently managing streaming data
between producers and consumers. Kafka ensures that the pipeline can ingest and process continuous
data streams with high availability and fault tolerance.

On the other hand, well-defined APIs are necessary for service orchestration, external system inte-
gration, and exposing internal functionality in a controlled and standardized manner. APIs are used
in several ways: to enable external systems or network components to push data into the pipeline; to
allow various internal modules to invoke each other’s functionality; and to make pipeline outputs, such
as inference results, accessible to other NFs. Following RESTful principles and contract-driven design
practices ensures long-term maintainability and interoperability of these interfaces.

FastAPI is a modern web framework that is fast and used to build APIs in Python and which auto-
matically produces documentation of the implemented APIs (OpenAPI and Swagger). This framework
is simple and easy to use, reducing development and maintenance time. It is also important to note that
it is compatible with Pytorch and Scikit-learn, facilitating integration into MLOps pipelines. FastAPI is
therefore an efficient and fast way to produce APIs, without wasting time documenting them.

NWDAF Collector: Scapy

In the early stages of pipeline development, it is essential to have a controlled and reproducible
environment for testing the system’s ability to ingest, process, and analyze real-world traffic. To meet
this requirement, we developed a custom NWDAF collector that simulates the behavior of a 5GC network
function. This module serves as the primary entry point for data into our pipeline, playing a vital role
in feeding raw network traffic into the system for further processing and analysis.

The NWDAF collector is responsible for supplying the pipeline with realistic network packets by read-
ing from a dataset composed of multiple .pcap files. These packet capture files contain actual recorded
traffic captured in various network scenarios. To extract and manipulate this packet data, the NWDAF
collector leverages Scapy, a powerful Python library used for crafting, parsing, and analyzing network
packets. Scapy excels at dissecting packet headers, reconstructing protocol stacks, and extracting meta-
data required by downstream components. In this context, Scapy is used to interpret the contents of the
.pcap files. The flexibility of Scapy allows the collector to simulate complex traffic patterns with possible
attack information.

Once the packets are parsed and prepared, the NWDAF collector exposes this raw traffic data through
a FastAPI interface, ensuring seamless integration with the pipeline’s data ingestion component (Data
Receiver).

Data Receiver and Data Relay: Python

To ensure seamless communication between the pipeline and the 5GC, two critical components were
developed: the Data Receiver and the Data Relay. These modules serve as the primary input and
output interfaces of the system, enabling bidirectional integration with NFs and external services.

The Data Receiver is responsible for ingesting data from the 5GC. It acts as a listening service,
exposed via a FastAPI endpoint, that receives incoming data from various 5G NFs. These payloads, often
structured in JSON format and aligned with 3GPP-compliant data models, are immediately pushed to
Kafka topics for downstream consumption. This design ensures that as soon as a core function exposes
network data, it is received by the pipeline in near real time and made available to the processing and ML
modules. Python was chosen to implement this service due to its simplicity and strong ecosystem support
for working with network data and asynchronous APIs. On the other side of the pipeline, the Data Relay
is responsible for exposing processed data and inference results back to the 5GC or any other consumer
system. This component formats and serves the analytics output through another FastAPI interface.
By exposing these results via RESTful endpoints, the Data Relay enables external NFs, dashboards,
or orchestration tools to access live insights generated by the ML models and the data processor. The
use of Kafka ensures that all outgoing data is decoupled from upstream processing, maintaining system
flexibility and scalability.

Together, the Data Receiver and Data Relay form the external communication boundary of the
pipeline. They ensure that the system remains interoperable, standards-compliant, and capable of op-

16

erating in real 5G network environments. Both are lightweight Python services, easy to deploy and
maintain, and tightly integrated into the event-driven flow of the pipeline.

Data Processor: Pandas, nProbe, and Scapy

The data processor is a key component of our pipeline, responsible for transforming raw traffic data
collected from the network into clean, structured, and enriched information that can be used by down-
stream modules and external systems. Most network data is not directly usable in its raw form, especially
for tasks like training ML models or feeding analytics dashboards. This module ensures that the incom-
ing traffic (often noisy, unstructured, and high-volume) is parsed, filtered, and converted into valuable
insights. To accomplish this, our data processor uses a combination of Scapy, nProbe, and Pandas.

We integrate nProbe, a high-performance flow exporter and collector that converts packet-level data
into rich flow-level metadata. nProbe is used to extractNetFlow features, which are essential for under-
standing traffic behavior at an aggregated level. These features include flow duration, number of packets
and bytes exchanged, TCP flag summaries, average packet size, flow directionality, protocol distribution,
and inter-arrival times. By exporting this information in NetFlow or IPFIX formats, nProbe adds seman-
tic meaning and behavioral context to the data, which is essential for tasks like anomaly detection, traffic
classification, and usage profiling. Additionally, nProbe supports advanced traffic analysis capabilities
such as application protocol recognition through deep packet inspection (DPI), TLS fingerprinting, and
classification using NBAR2, all of which enrich the dataset used downstream.

Once data is parsed and enriched, it is structured and prepared for analytics using Pandas, a widely
adopted data analysis library in Python. Pandas provides a robust set of tools for cleaning, transform-
ing, and aggregating structured data. In our pipeline, Pandas handles missing values, normalizes data
formats, creates aggregated views (e.g., per-user, per-flow, or per-network slice), and encodes features
suitable for ML models. With its powerful DataFrame abstraction and interoperability with the rest of
the data science ecosystem, Pandas enables efficient data wrangling and fast prototyping of ML-ready
datasets.

Data storage: influxDB and ClickHouse

It is a requirement of the project that our pipeline stores the data instead of using an external service.
So, to accommodate this necessity, we have a data storage module where all data is kept on-premise. This
module has a middleware and two databases. The middleware agent is responsible for fetching the data
present in the event-driven middleware (Kafka), and deciding in which database it should store them.
This decision is made according to the nature of the data. The raw data fetched from the 5GC NFs is
stored in our time series database (influxDB) and the processed data is stored in the data warehouse
(ClickHouse).

• InfluxDB is a high-performance, open-source time series database. It is optimized to handle
high write rates and real-time analysis, making it ideal for use cases such as IoT sensor data and
monitoring. It also has a query language similar to SQL but specified for time series data. In this
way, influxDB is an excellent choice to integrate into our pipeline and use as the main source of
storage for data received from the network, since this data comes from IoT sensors and there is
great importance in maintaining the chronological order of the time record in which it was collected.

• ClickHouse is an open-source column-oriented database that stands out for its high performance
as a data warehouse for storing analytical and time series data. It has a query language similar to
SQL and is optimized for high-speed queries on large data sets, making it an excellent choice for
analyzing large volumes of data. It is also important to mention its efficient storage with advanced
compression techniques, which reduce the cost of storage (something crucial when working with large
volumes of data). Therefore, ClickHouse is the perfect choice for storing processed data, ready to
be used to train the ML model, and data from the model’s inference, which is then distributed to
data consumers.

ML training and inference: Scikit-learn and Imbalanced-learn

To ensure accurate and reliable model predictions, our pipeline includes a dedicated ML training and
inference module. This component is responsible for training and testing ML models using the processed
data stored in the data warehouse (ClickHouse) before the models are deployed for real-time inference.

17

For the initial version of the pipeline, we chose to use Scikit-learn and Imbalanced-learn, both
of which are robust and mature Python libraries suitable for building classical ML solutions. These
technologies offer a solid foundation for supervised and unsupervised learning tasks such as classification,
regression, and clustering, all of which are critical in network data analytics.

Scikit-learn is an open-source ML library built on top of NumPy, SciPy, and Matplotlib. It includes
a wide range of efficient tools for ML and statistical modeling, including support vector machines, random
forests, gradient boosting, k-means, and more. Its ease of use, extensive documentation, and integration
with other Python libraries make it an ideal choice for prototyping and deploying models in production.

Imbalanced-learn is a complementary library that provides techniques specifically designed for im-
balanced datasets, which are common in real-world network traffic (e.g., rare failure events or anomalies).
It supports resampling methods such as SMOTE (Synthetic Minority Over-sampling Technique), under-
sampling, and combined strategies that help improve model performance on skewed datasets.

By using these two libraries together, we ensure the development of balanced, high-performing mod-
els that are well suited for network traffic prediction and anomaly detection. These models are then
deployed via FastAPI, making their predictions available in real-time to other components in the pipeline
or external consumers.

Dashboard interface: Chronograf

Before trying to integrate the pipeline in the 5GC network, we need to simulate the behavior of a
network function that would consume the data produced by our pipeline (process and inference data) so
we can validate it. The easiest way to visualize this data is to use a dashboard where we can display
all the metrics. Instead of wasting time building a dashboard from scratch, we can use technologies
that make the process easier and faster. So, on that note, we decided to use Chronograf developed by
InfluxData.

Chronograf is a data visualization and monitoring tool used to analyze various metrics and records
obtained in real-time. It offers a complete dashboarding solution for visualizing data. With it, we can
easily clone a pre-canned dashboard (over 20 pre-canned dashboards). This saves a lot of development
time since you don’t have to make a complete interface from scratch with a specialized framework.
Chronograf allows us to use Flux or the InfluxQL queries to fetch and analyze data. This tool makes
it easy to develop dynamic and customizable interfaces without a great deal of effort and time, making
it the perfect choice for simulating the operation of a 5GC network function that consumes the data
provided by the pipeline.

4.7 Docker Deployment: Containerization and Orchestration of the Pipeline

To ensure modularity, portability, and ease of deployment, the entire pipeline architecture was container-
ized using Docker. Each module of the system was isolated into its own container or grouped with
related components to maintain logical cohesion. This separation allows for independent management,
scaling, and troubleshooting of each part of the system while also facilitating replication across different
environments. The current deployment setup includes the following main containers:

• Data Collector: This container simulates a network function from the 5GC using Scapy. It is
responsible for feeding raw packet data into the pipeline.

• Kafka Middleware: A set of containers responsible for message brokering, enabling asynchronous
communication between all pipeline components. These include Kafka, Zookeeper, and supporting
services for managing topics and partitions.

• Data Processor: This container runs the processing logic, which includes parsing, cleaning, trans-
forming, and aggregating raw data.

• Databases: Three separate containers are used for on-premise storage, each serving a distinct role
in the data lifecycle:

– InfluxDB (Raw Data): Stores the raw, time series data collected from the network before
processing. This instance is optimized for high write throughput and chronological consistency,
crucial for time-sensitive network telemetry.

– ClickHouse: Holds the processed and aggregated data that is used for analytics, ML training,
and inference. Its columnar storage and query efficiency make it ideal for handling large
volumes of structured, high-dimensional data.

18

– InfluxDB (Inference Results): A dedicated instance used to store the output of the ML
inference process. This separation allows for seamless integration with Chronograf, enabling
real-time visualization of prediction results.

• ML Training: This container is responsible for training and validating ML models. The container
handles all preprocessing steps required for model training and supports experimentation with
various classical ML algorithms.

• ML Inference: This container performs real-time or batch inference using the trained models.
This separation ensures that inference workloads are decoupled from training, improving reliability
and scalability during deployment.

• API Services: Exposes APIs built with FastAPI that handle both ingestion from external sources
and delivery of processed results or inference outputs. It ensures secure, standardized interaction
with external consumers or other NFs.

• Dashboard Interface: The dashboard is deployed in its own container and runs Chronograf,
which provides real-time visualization of metrics and analytics generated by the pipeline.

Docker Compose: Coordinated Multi-Container Management

To orchestrate all these services and ensure their correct initialization and communication, Docker
Compose was employed. This tool facilitates the coordinated startup of all containers, manages inter-
container networking, and enforces dependency order.

Docker Compose ensures that environment variables are consistently defined and managed across ser-
vices, making the setup highly reproducible. It also enables periodic health checks, automatic container
restarts upon failure, and centralized management of persistent volumes. In production-like environ-
ments, this orchestration streamlines updates, provides robust container-level logging, and simplifies the
deployment and scaling of the entire pipeline stack.

In summary, using Docker and Docker Compose allowed for a clean, modular deployment strategy
that simplifies the system’s maintenance, enhances its portability, and supports agile development and
testing cycles across different environments.

4.8 Data Flow

Knowing how data flows in the pipeline is extremely important for properly understanding the imple-
mentation. Each component of the system interacts with other components by messaging, using an
event-driven middleware implemented with kafka, and by API calls, using Fast Api endpoints (shown in
Figure 7).

Figure 5: Simulation of traffic data extraction in a 5G core network

19

The system has a Kafka message broker with 4 topics: RAW NETWORK DATA RECEIVED, RAW -
NETWORK DATA, PROCESSED NETWORK DATA, INFERENCE DATA. These topics are useful,
for the corresponding components consume from or produce to, data. There two types of APIs used, one
inside the pipeline to deploy the best model for inference, and the others correspond to 5G NFs requests.

To simulate the network data that is supposed to be received from the 5G network core, the dataset
mentioned before was used. This dataset had pcap files, with millions of captured packets. Our data
producer (NWDAF-collector) transforms this data into a format accordingly to a 5G network function
information.

The NWDAF Collector plays a crucial role in the simulation of network data acquisition. As shown
in Figure 5, it emulates the behavior of a real NWDAF-like function by capturing packets between the
gNB and the UPF on the N3 interface. These packets are encapsulated in GTP-U format, and a probe
component is responsible for intercepting and duplicating this traffic, saving it in the form of PCAP files.
The NWDAF Collector exposes this data through standard endpoints. This process effectively simulates
the real-time flow of data from the 5GC network into an analytics system.

Figure 6: NWDAF Event Subscription and Notification Flow

To enable interoperability and compliance with 5G SBA principles, the pipeline components must
dynamically discover and interact with other NFs. This begins with the pipeline registering itself with
the NRF. The registration includes specifying its service capabilities and endpoints. Once registered, the

20

pipeline can issue NF discovery requests to the NRF to locate other NFs (like the NWDAF Collector)
that expose needed services. This dynamic discovery mechanism ensures that the pipeline remains loosely
coupled and scalable, and can adapt to varying network environments.

Following successful discovery, the next step involves subscribing to events exposed by the NWDAF
Collector. This is illustrated in the second diagram. A consumer component, such as NDAP or
any analytic microservice, initiates a subscription creation request via HTTP POST to the /nnwdaf-
eventssubscription/v1/subscriptions endpoint. The request specifies the type of event it is interested in,
such as PDU SESSION TRAFFIC, and provides a notificationURI to which the Collector will send data.
Upon successful subscription, the NWDAF Collector responds with a 201 Created status and provides the
subscription details. Later, when the event condition is met (a batch of traffic data becomes available),
the Collector triggers an HTTP POST callback to the consumer’s notificationURI, pushing the batch
data (shown in Figure 6).

This architecture simulates a standard-compliant 5G analytics interaction loop, enabling seamless
data ingestion, transformation, and downstream processing.

The Data Receiver component ingests network traffic data that has already been preformatted ap-
propriately. This data is then forwarded directly to the Kafka topic named RAW NETWORK DATA,
acting as the primary entry point into the processing pipeline. Two downstream components subscribe
to this topic: the Data Storage Middleware and the Data Processor. Each of these serves a distinct
function, with the former responsible for archiving the raw data and the latter for real-time analytical
transformation.

The Data Storage Middleware, in its first role, transforms the raw network data into a format suitable
for time-series storage by aligning it with InfluxDB’s structural requirements. Specifically, it uses the
packet timestamp as the index, thereby enabling efficient chronological querying and long-term retention.
This archival of raw network traffic is critical, as it provides a fallback source for data recovery in case of
processing failures and supports future exploratory analysis or forensic investigations.

Simultaneously, the Data Processor operates as the core of the analytical pipeline. It consumes the
same raw network traffic and aggregates the packets into dynamic batches. When a predefined threshold
is reached, a batch is encapsulated into a temporary PCAP file. This file is then processed using nProbe, a
tool that converts packet-level data into flow-level records. nProbe extracts 43 distinct flow features from
each batch, enriching the data further by attaching ground truth labels where applicable. The resulting
structured dataset is then forwarded to the PROCESSED NETWORK DATA Kafka topic, making it
available for further consumption and downstream tasks.

Figure 7: System Data Flow

21

Figure 8: System Data Flow (Architectural View)

From here, the Data Storage Middleware takes on a second responsibility. It now consumes the
enriched flow data and converts it into a format compatible with the ClickHouse database, the system’s
primary data warehouse. ClickHouse, known for its high-performance analytical capabilities, stores this
data persistently to ensure rapid querying and reliable backup for processed traffic information. This
stored dataset forms the basis for ML model training and evaluation.

The ML Training component is tasked with building predictive models for attack detection using the
processed network data. At startup, it loads historical data from the ClickHouse warehouse into memory
using the Pandas library. This component then conducts a preprocessing phase where specific features are
removed to minimize noise and potential bias. For binary classification tasks, the features excluded from
training include: FLOW START MILLISECONDS, FLOW END MILLISECONDS, IPV4 SRC ADDR,
L4 SRC PORT, IPV4 DST ADDR, L4 DST PORT, ICMP TYPE, ICMP IPV4 TYPE, DNS QUERY -
ID, DNS QUERY TYPE, DNS TTL ANSWER, FTP COMMAND RET CODE, Attack, and id. For
multiclass classification, the same features are removed except for the Attack label, which is retained as
the target variable.

The model training process employs several supervised learning algorithms. For binary classification,
the models used include Random Forest, Gradient Boosting, Multilayer Perceptron (MLP) neural net-
works from the Scikit-learn library, and the XGBoost classifier from the xgboost library. The same set
of models, excluding XGBoost, are used for multiclass classification, utilizing their respective multiclass
implementations. To address the severe class imbalance, where benign traffic heavily outweighs attack
instances, the system applies oversampling and undersampling techniques such as SMOTE and random
undersampling. This helps reduce overfitting and improves generalization performance.

The training dataset is split into 80% for training and 20% for testing, using stratified sampling
to maintain class distribution across subsets. Each algorithm is trained sequentially using the same
preprocessed data. After training, each model is evaluated using its classification report, and key metrics
are computed. The primary metric used for model selection is the F1 score, as it balances precision and
recall and is particularly well suited for imbalanced classification problems like intrusion detection. For
both binary and multiclass tasks, the model achieving the highest F1-score is selected for deployment.

Once the best models are identified, they are serialized using Python’s pickle module. This serialization
format allows efficient transfer of model objects to the ML Inference component (shown in Figure 8).
Deployment is performed dynamically through HTTP POST requests to API endpoints exposed by the
ML Inference service, replacing the currently deployed models with the newly trained ones in real time.

The ML Inference component continuously consumes data from the PROCESSED NETWORK -
DATA Kafka topic and performs real-time attack detection. It applies the deployed models to classify
each network flow as either ’benign’ or ’attack’ for binary detection and, in the case of detected attacks,
assigns one of several predefined categories including ‘Fuzzers’, ‘Analysis’, ‘Backdoors’, ‘DoS’, ‘Exploits’,
‘Generic’, ‘Reconnaissance’, ‘Shellcode’, or ‘Worms’. Once a prediction is made, the corresponding labels

22

are appended to each data row. The labeled data is then published to the INFERENCE DATA Kafka
topic, where it becomes available for further analysis or integration with downstream systems such as
dashboards, alert engines, or response mechanisms. This cycle repeats continuously, enabling the system
to maintain up-to-date threat intelligence and detection capabilities in a live network environment.

Once the inference data is generated by the ML Inference module, it is routed to the Data Relay com-
ponent, which is tasked with exposing the analytics results to interested external entities. This exposure
process emulates the 3GPP-compliant NWDAF behavior by enabling third-party NFs to subscribe to
specific analytics events. To simulate such behavior, a Data Consumer (representing an NF consumer)
first registers itself with the NRF via FastAPI endpoints. This step ensures service discovery and aligns
with the SBA defined in the 5GC.

Figure 9: Service Exposure Flow

After registration, the Data Consumer proceeds to subscribe to the pipeline’s analytics feed using
the endpoint /nnwdaf-eventssubscription/v1/subscriptions. The subscription includes a JSON body in-
dicating interest in the PDU SESSION TRAFFIC event type and providing a notificationURI to which
the pipeline should send notifications. This interaction simulates the standardized procedure used by
real-world NFs to request data from NWDAF (shown in Figure 9).

Once the subscription is accepted and acknowledged, the Data Relay begins delivering the inference
results in batch mode to the consumer’s specified callback URI via HTTP POST requests. These payloads
contain the processed insights derived from observed traffic patterns, effectively mimicking NWDAF’s
real-time and historical data exposure. The combination of NRF registration, subscription management,
and asynchronous event notification demonstrates how the pipeline supports real-time analytics exposure,
a key enabler for intelligent network automation in 5G.

In the Dashboard Interface component, data is stored in a dedicated time-series database using In-
fluxDB, chosen for its native integration with Chronograf, the selected data visualization and analysis
tool for this implementation. Chronograf enables seamless interaction with time-series data, allowing it
to be easily displayed in both tabular and graphical formats. This greatly simplifies the process of moni-
toring and analyzing network traffic. Among the key metrics visualized are the most recent network flows
filtered specifically for those labeled as attacks (shown in Figure 10), the distribution and frequency of
each attack type (shown in Figure 11), and various other insights essential for real-time threat monitoring
and historical trend analysis, as illustrated in Figure 12.

23

Figure 10: Last received attacks

Figure 11: Attack frequency by type

Figure 12: Dashboard with data analytics metrics (Network Traffic Overview, TCP Retransmission Rate)

The implementation also includes an additional data flow that supports manual model training
triggered by an API call. The ML Training component exposes a POST API endpoint at /nnwdaf-

24

mlmodeltraining/v1/subscriptions, which allows external services to request the training of a specific ML
model. This endpoint requires the model ID as a parameter in the HTTP POST request, and it initiates
the training process for the corresponding model, applicable only to binary classification models. Upon
completion of the training, the component returns a set of performance metrics via a callback mechanism.
These metrics include the model name, accuracy, precision, recall, F1-score, and the Matthews Correla-
tion Coefficient (MCC), providing a comprehensive evaluation of the model’s performance, as shown in
Figure 13.

Figure 13: Training API response schema

25

5 Results

The developed system not only fulfills the functional goals defined for the selected use case but also
successfully meets a wide range of non-functional requirements that are essential for real-world deployment
in dynamic 5G environments. Starting with compliance and standards, the architecture was designed
to emulate an NWDAF-like component, respecting 3GPP specifications and service-based architecture
principles. RESTful APIs were implemented using FastAPI, including mock interactions with NRF and
NWDAF event subscription endpoints, ensuring compatibility with modern 5GC systems.

Scalability in the system was supported through the integration of Kafka as the event-driven middle-
ware. Kafka enables asynchronous communication between decoupled components and supports horizon-
tal scaling, making the architecture suitable for handling large volumes of data and deploying multiple
ML models in parallel. While formal performance benchmarking was not conducted, communication
between components was thoroughly verified, and message transmission times were observed to remain
consistently low. We manually varied the volume of consumed data and observed that the system main-
tained stable performance across different loads. During system integration, component communication
was observed to be efficient, with low-latency data flow across the pipeline. The dashboard consistently
displayed updates in near real-time, with refresh times staying comfortably within the expected 30 second
responsiveness window.

In terms of security, all collected, processed, and stored data remained on-premise, ensuring data
sovereignty and compliance with privacy and protection requirements.

From a maintainability perspective, the system was designed with a modular architecture that sup-
ports independent development, replacement, and scaling of each component. Modules are separated and
loosely coupled via Kafka and APIs, facilitating future updates and improvements.

Reliability and availability were also core concerns. Kafka’s message durability guarantees that no data
is lost during service interruptions, and Docker’s health check and restart policies ensure that isolated
component failures do not disrupt the entire system. All critical data was persisted using structured
storage solutions, and structured logging was implemented to support observability and debugging.

To further support operational transparency, logging and monitoring capabilities were integrated
across all core modules. These logs capture processing activity, model behavior, and system health,
laying the groundwork for future integration with standardized monitoring solutions.

Finally, the effectiveness of the system was validated using a selected anomaly detection use case.
While the machine learning performance metrics fell short of expectations, achieving an F1-score below
the targeted 90% we believe there is strong potential for improvement. As more data becomes available,
particularly additional examples of anomalies, the model’s performance is expected to improve signifi-
cantly. This is due to the increased training data helping to address the current class imbalance, which
is a known limitation in early-stage anomaly detection systems.

Under these experimental conditions, two distinct executions were performed to evaluate the evolution
of model performance in detecting and classifying network attacks. The first execution, initiated at the
beginning of the dataset and running for a longer duration, enabled the extraction of a greater number of
flows, providing a more comprehensive view of how algorithm performance evolved over time. The second
execution, however, commenced at the 3.pcap file, which contains a significantly higher concentration of
anomalous data than prior segments. This alternative approach aimed to assess the impact of early
exposure to anomaly-rich data on machine learning models.

For each execution, two tables and two plots were produced to facilitate a detailed analysis. The
first table presents the number of detected attacks relative to the total number of flows (Table 3 and
5), allowing for an evaluation of attack ratios across different intervals. By examining the progression
of attack detection over time, insights can be drawn regarding the adaptability and sensitivity of the
algorithms as they encounter more data.

The second table provides a more granular breakdown by categorizing attacks according to their type
across flow intervals (Table 4 and 6). This data serves as a foundation for assessing the effectiveness
of multiclass classification models, which aim to correctly identify specific attack types. The temporal
evolution of classification accuracy offers valuable perspectives on the models’ capability to refine their
understanding of distinct threat patterns.

Complementing these tabular representations, two plots illustrate the variation in F1-score across
training and testing iterations. The first, shown in Figure 14 and 16, plot focuses on binary attack
detection, evaluating the performance of Random Forest, Gradient Boosting, MLP Neural Networks,
and XGBoost in distinguishing between normal and malicious traffic. The second plot (Figure 15 and
17) extends the scope to multiclass attack classification, measuring the precision of each algorithm in

26

categorizing attacks at intervals of 5000 flows.
Through a comparative evaluation of both executions, important conclusions can be drawn regard-

ing the effects of dataset composition and retraining frequency on predictive accuracy, and also take
conclusions of each algorith suitability for the task.

5.1 Execution 1

Number of Flows Number of Attacks

5000 10
10000 12
15000 52
20000 96
25000 149
30000 187
35000 209
40000 212
45000 212
50000 212
55000 212
60000 212
65000 212
70000 212
75000 212
80000 212
85000 212
90000 212
95000 212
100000 228
105000 302
110000 345
115000 390
120000 423
125000 473
130000 501
135000 550
140000 589
145000 628
150000 659
155000 736
160000 758
165000 781
170000 809
175000 854
180000 900
185000 961
190000 1005
195000 1208
200000 1291
205000 1373
210000 1445

Table 3: Number of Attacks Detected per Flows Number - Execution 1

27

Fuzzers Reconnaissance Shellcode Backdoor DoS Exploits Generic Worms

5000 2 1 0 0 2 5 0 0
10000 2 2 0 0 2 6 0 0
15000 2 11 4 0 4 27 3 0
20000 10 20 6 0 7 47 5 0
25000 24 32 9 0 12 66 5 0
30000 48 40 9 0 13 69 7 0
35000 60 45 10 0 14 71 8 0
40000 60 50 10 0 17 76 14 0
45000 60 50 10 0 17 76 14 0
50000 60 50 10 0 17 76 14 0
55000 60 50 10 0 17 76 14 0
60000 60 50 10 0 17 76 14 0
65000 60 50 10 0 17 76 14 0
70000 60 50 10 0 17 76 14 0
75000 60 50 10 0 17 76 14 0
80000 60 50 10 0 17 76 14 0
85000 60 50 10 0 17 76 14 0
90000 60 50 10 0 17 76 14 0
95000 60 50 10 0 17 76 14 0
100000 60 50 10 0 17 76 14 0
105000 85 58 12 0 21 103 22 0
110000 92 66 13 0 25 125 23 0
115000 92 75 14 0 38 146 24 0
120000 92 84 14 0 39 167 26 0
125000 100 101 20 1 39 183 28 1
130000 108 107 20 1 40 195 29 1
135000 110 121 22 1 45 216 34 1
140000 110 130 22 1 48 237 40 1
145000 125 137 22 1 49 253 40 1
150000 125 138 23 1 54 274 43 1
155000 131 149 23 1 59 324 48 1
160000 137 153 24 1 62 332 48 1
165000 142 155 24 1 68 340 50 1
170000 149 165 24 1 71 348 50 1
175000 149 180 29 1 73 365 55 2
180000 158 190 30 1 75 379 65 2
185000 166 197 31 1 76 385 102 3
190000 171 202 32 1 76 390 130 3
195000 171 210 32 1 77 399 315 3
200000 182 217 34 1 80 404 370 3
205000 192 228 35 1 80 410 424 3
210000 195 232 36 1 84 425 469 3

Table 4: Attack Types Detected per Flows Number — Execution 1

28

Figure 14: F1-score per algorithm by number of flows.

Figure 15: F1-score per multiclass algorithms by number of flows.

29

5.2 Execution 2

Number of Flows Number of Attacks

5000 88
10000 184
15000 449
20000 590
25000 714

Table 5: Number of Attacks Detected per Flows Number — Execution 2

Fuzzers Reconnaissance Shellcode DoS Exploits Generic Worms Backdoor

5000 12 17 4 3 37 15 0 0
10000 27 25 8 6 50 67 1 0
15000 44 37 8 8 57 294 1 0
20000 66 56 11 12 78 366 1 0
25000 72 71 12 14 117 426 1 1

Table 6: Attack Types Detected per Flows Number — Execution 2

Figure 16: F1-score per algorithm by number of flows.

30

Figure 17: F1-score per multiclass algorithms by number of flows.

31

6 Discussion

This section analyzes the results obtained from our system in the previous section, highlighting both
its strengths and the challenges encountered during development. The discussion provides context for
understanding what influenced the results and outlines key considerations for future improvements.

6.1 MLOps Pipeline

The MLOps pipeline was designed to manage the entire ML lifecycle of the system, from data ingestion
and preprocessing to model training, deployment, and evaluation. The pipeline was tailored to handle
network traffic data and support dynamic updates in a near-real-time environment.

One of the first challenges we encountered involved handling streaming data in batches. During
preprocessing, raw network traffic was split into fixed-size batches for processing. However, this approach
sometimes caused individual flows to be fragmented across batch boundaries, resulting in incomplete or
truncated flow records. These partial flows led to inaccurate feature extraction, ultimately degrading the
performance of the classification models. To mitigate this issue, we adjusted the batch size to reduce the
likelihood of cutting flows mid-transmission, thereby preserving the integrity of flow-based statistics and
improving detection reliability.

Another issue we encountered was related to the early decision to convert raw network traffic into
JSON format. This was initially motivated by the structure of NWDAF APIs, which are designed to
consume and expose data using JSON. However, translating raw packet-level data into a consistent JSON
representation proved to be highly problematic. Network traffic includes a wide range of protocols and
packet structures, and maintaining a one-size-fits-all JSON schema became unfeasible. Moreover, the
tools available for converting JSON back into a form suitable for NetFlow-based feature extraction, such
as that required by nProbe, were either unreliable or nonexistent. Ultimately, this led us to abandon the
JSON-based approach and work directly with raw network data, which ensured compatibility with the
feature extraction tools and simplified the pipeline.

Regarding system performance, we evaluated both binary and multiclass classification tasks as the
number of processed flows increased.

In the binary case (Figure 14), F1-scores improved quickly with the initial increase in data but later
began to fluctuate. This behavior aligns with Table 3, which shows that in several intervals, the number
of unique attack samples remained unchanged despite more flows being processed. This lack of new
attack information likely contributed to the temporary stagnation or decline in model performance. As
more diverse attacks were reintroduced later, performance began to rise again at higher levels.

In the multiclass case (Figure 15), results were more erratic, especially when attack diversity was
low. As with the binary case, improvements became more consistent when new attack types were added
to the dataset. Sampling techniques were useful during the early phases but had limited effect once
the underlying class imbalance was no longer severe. Overall, the system benefited most when both the
quantity and diversity of attack samples increased.

At this stage, model retraining is based solely on the availability of new labeled data. Although several
other triggers (such as performance degradation, shifts in traffic patterns, or signs of concept drift) were
considered, we chose to proceed with a data-availability-based approach, as it provided a more controlled
setup to verify and validate the retraining process. This method proved sufficient for the scope and
objectives of the current project, allowing us to demonstrate end-to-end retraining functionality within
the pipeline.

In summary, the MLOps pipeline involved real-time data ingestion, feature extraction from raw Net-
flow, intelligent sampling techniques to handle imbalance, dynamic model comparison, and automatic
deployment of the best model. A key achievement of our pipeline was the implementation of CI/CD
mechanisms for trained models. This allowed the system to seamlessly integrate new models into the
inference service with minimal downtime, enabling rapid iteration, adaptation to new data patterns, and
improved maintainability over time. This setup enabled the system to stay responsive, adaptable, and
scalable within a production-like environment.

6.2 5G-Core Integration

Integrating our pipeline with the 5GC network presented several challenges, primarily due to the com-
plexity and breadth of the APIs defined by the 3GPP standards. These APIs are extensive, highly
technical, and still evolving, which makes their interpretation and practical implementation particularly

32

difficult. Additionally, many parameters specified within these interfaces are tailored for production-grade
deployments. This limits their direct applicability in academic or prototyping environments.

Despite these challenges, our pipeline was designed with 5G integration in mind and already supports
basic interaction patterns expected in such contexts. Through RESTful APIs developed using FastAPI,
the system is capable of receiving network-related data and exposing processed results or ML inferences
to external consumers. This enables simulated communication with 5G NFs, both as a data consumer
and as a data provider, following the architectural principles outlined by the 3GPP.

One of the main limitations we encountered was related to the available infrastructure at the Instituto
de Telecomunicações (IT). Although the IT provides access to a 5GC instance, the current deployment
does not expose the necessary interfaces. Without these APIs, it was not possible to connect our system
directly to real NFs like the AMF, SMF, or NRF.

Another limitation is found in the 3GPP TS 29.520 specification for ML model monitoring. While it
defines a standardized interface for exposing model evaluation metrics, it only supports basic indicators
such as accuracy. This is insufficient for production-ready analytics systems, where deeper insight into
model behavior is critical. Metrics like precision, recall, F1-score, confidence intervals, or drift indicators
are essential to effectively monitor and maintain ML models, especially in security-sensitive applications
like anomaly detection. Future revisions of the system should incorporate an extended monitoring layer
to supplement TS 29.520 with more detailed performance indicators.

To address this, we simulated the behavior of NFs and traffic using tools such as Scapy. The pipeline
was built around a modular API layer that preserves compatibility with 3GPP principles. This ensures
that, in future iterations, it can be integrated with more complete or open-source 5GC implementations
such as Open5GS or Free5GC. With minimal adjustments, the system can be validated in realistic
environments where actual traffic and network feedback are available.

Nevertheless, further testing in a real 5GC setup will be essential to fully validate the system. While
the current proof-of-concept demonstrates the architectural viability and functional correctness of the
pipeline, its performance, robustness, and adaptability under real-world operating conditions must be
assessed. Such validation would involve end-to-end integration with live NFs, real network telemetry,
and runtime orchestration logic, allowing us to evaluate aspects like data fidelity, inference latency, and
automation responsiveness in realistic scenarios.

33

7 Future Work

The system developed in this project delivers a modular and functional MLOps pipeline for 5G network
analytics, meeting the objectives defined for the selected use case. Its architecture supports real-time
anomaly detection and provides a solid foundation for further development. Several improvements have
already been identified to expand its scalability, integration with real environments, and long-term adapt-
ability.

One important improvement is the migration from Docker Compose to Kubernetes. This change
would enhance the system’s scalability, resilience, and support for dynamic resource allocation.

Another area of development is the integration with real components of the 5GC, such as the AMF,
SMF, UPF, and NRF. However, this integration was not performed during the current phase of the
project because the 5GC system provided by the Instituto de Telecomunicações, based on Huawei’s
implementation, does not expose the necessary APIs for external access.

To build on this foundation and support more robust lifecycle management of ML components, a key
next step is to improve visibility into model behavior. One planned enhancement is the implementation
of a monitoring API compliant with the 3GPP TS 29.520 specification. This API would expose metrics
such as confidence levels, prediction accuracy, and anomaly scores. It should also support automatic
retraining when thresholds are exceeded, ensuring that model performance remains consistent over time
and that operators are notified of any relevant changes.

Additionally, the system is expected to evolve towards interacting directly with other NFs when
an attack is detected. For example, it could invoke the ReleaseUEContext operation via the Namf_-

Communication service [2], block malicious User Equipment (UE), or update policies via the PCF. These
interactions would enable rapid and coordinated responses to threats in real time.

Overall, the system is well positioned for future expansion. Its current architecture supports key
extensions that will improve automation, resilience, and integration, making it suitable for deployment
in realistic and dynamic 5G network scenarios.

34

8 Conclusion

This project stands as a comprehensive exploration of how ML and modern software practices can be
applied to enhance intelligence and automation within the evolving context of 5G networks. Anchored
around the concept of NWDAF, our work aimed to simulate the kind of data-driven network intelligence
envisioned in 3GPP architectures, where real-time analytics, automation, and adaptability are core pillars.

Though the specific use case chosen focused on real-time attack detection, the primary objective of the
project was to validate broader architectural principles. We showed how complex, high-volume network
data can be ingested, processed, analyzed, and acted upon dynamically within a distributed MLOps
pipeline.

This system emulates what a true NWDAF-enabled pipeline might look like: handling real network
traffic, extracting meaningful features from low-level flows, dynamically training and selecting the best-
performing models, and delivering them through an automated, continuously updating inference service.
In doing so, we addressed not only the technical challenges of ML lifecycle management, but also the
broader systems integration concerns that come with deploying intelligence into real-time telecom envi-
ronments.

Perhaps one of the most valuable achievements was the development of a pipeline capable of continuous
delivery and deployment, ensuring that models are always up to date, automatically integrated, and
ready to respond to new network conditions. Additionally, we implemented a training API, allowing
network operators to trigger new training cycles and evaluate model performance periodically, providing
greater control and visibility into the evolution of deployed models. This aligns with the ambition behind
NWDAF: enabling mobile networks to become increasingly autonomous, self-optimizing, and responsive.

We also gained crucial insight into the limitations of current tooling, the importance of data quality
and balance, and the difficulties of standardization in such a heterogeneous domain. These lessons, often
hard-won, shaped a more resilient and pragmatic design philosophy as the project matured.

Ultimately, this project demonstrated how ML can be thoughtfully embedded into the operational
fabric of future mobile networks. By aligning our implementation with NWDAF principles and 5G
requirements, we delivered a functional and extensible platform that not only meets present demands
but is also prepared to evolve. The combination of automation, observability, adaptability, and data-
centric design gives this work lasting value as a practical reference for intelligent network analytics moving
forward.

35

References

[1] 3GPP. 5g system overview. https://www.3gpp.org/technologies/5g-system-overview.

[2] 3GPP. 3gpp ts 29.518 - 5g system; access and mobility management services; stage
3. https://www.3gpp.org/ftp/Specs/archive/29_series/29.518/, 2024. Particularly
the ReleaseUEContext operation exposed by the Namf_Communication service. See also:
https://github.com/jdegre/5GC_APIs/blob/117674b61cd9ae4f68f5b5f91ec63686b8930cab/

TS29518_Namf_Communication.yaml#L664.

[3] Rui Ferreira, João Fonseca, João Silva, Mayuri Tendulkar, Paulo Duarte, Marco Araújo, Raul Barbosa,
Bruno Mendes, and Adriano Goes. Demo: Enhancing network performance based on 5g network
function and slice load analysis. In 2023 IEEE 24th International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2023.

[4] Majed Luay, Siamak Layeghy, Seyedehfaezeh Hosseininoorbin, Mohanad Sarhan, Nour Moustafa, and
Marius Portmann. Temporal analysis of netflow datasets for network intrusion detection systems.
https://arxiv.org/html/2503.04404v1, 2025.

[5] Abdelkader Mekrache, Karim Boutiba, and Adlen Ksentini. Combining network data analytics func-
tion and machine learning for abnormal traffic detection in beyond 5g. In GLOBECOM 2023 - IEEE
Global Communications Conference, 2023.

[6] Nour Moustafa and Jill Slay. Unsw-nb15 dataset. https://research.unsw.edu.au/projects/

unsw-nb15-dataset, 2015.

[7] N. Nisha, K. Lakshman, and R. Kumar. A smart data analytics system generating for 5g n/w system
via ml based algorithms for the better communications. In 2024 1st International Conference on
Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS), 2024.

[8] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. Towards a standard feature set for network
intrusion detection system datasets. Mobile Networks and Applications, 27, 2021.

36

https://www.3gpp.org/technologies/5g-system-overview
https://www.3gpp.org/ftp/Specs/archive/29_series/29.518/
https://github.com/jdegre/5GC_APIs/blob/117674b61cd9ae4f68f5b5f91ec63686b8930cab/TS29518_Namf_Communication.yaml#L664
https://github.com/jdegre/5GC_APIs/blob/117674b61cd9ae4f68f5b5f91ec63686b8930cab/TS29518_Namf_Communication.yaml#L664
https://arxiv.org/html/2503.04404v1
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset

	Introduction
	Background
	5G Network Context
	ML Context

	State of the Art
	Proposed Solution
	Objectives & Expected Results
	Actors
	Identified Use Cases
	Use Case
	Scenario
	Dataset

	System Requirements
	Functional Requirements
	Non-functional Requirements

	Architecture
	Docker Deployment: Containerization and Orchestration of the Pipeline
	Data Flow

	Results
	Execution 1
	Execution 2

	Discussion
	MLOps Pipeline
	5G-Core Integration

	Future Work
	Conclusion

