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1. Context

Modern mobile networks are more complex than ever. sM g(;;;trzllﬂ;l; N
We need smart tools to manage and optimize them. . S5P ™ e
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It leverages MLOps to predict network behavior and =

exposes various data through 3GPP standardized APIs.



2. State of Art

Papers [1],[2],[3] emphasize ML capabilities but do not address full ML lifecycle
management (Cl/CD, retraining).

Papers do not explore how models adapt to changing data (model drift).

A gap exists between theoretical ML solutions and practical, deployable Al-driven
network functions.

nProbe has emerged as an efficient flow exporter capable of generating suitable features
for ML-based network analysis [4].

There is no proof-of-concept that demonstrates how to operationalize ML pipelines
(MLOps) in a NWDAF-like system.,




3. Actors

Network/service provider Service Client
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5. System Architecture
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6.5G Core Flow

Service Registry (NRF)

O FastAPI

O FastAPI

NWDAF-collector

p-
=) A

O FastAPI

Data Receiver

Network Data Analytics Pipeline

Data Processor

.

pandas 3J ’ ;py

Data Relay

A

Idvised @

Y

DBs middleware

A

Time series DB

&) influxdb

Data Storage

Data Warehouse

ML Training

pandas

.ﬂewm

Imbalanced

O FastAPI

3|
V
»|
y

kafka

Event-driven middleware

Dashboard Interface

chronograf

ML Inference

pandas

Data Consumer

A

Time series DB

@ influxdb

%fewm

O FastAPI

Y

O FastAPI




6. System Flow
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6. System Flow
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7. Goals Review

Implement a Data Analytics pipeline for network data.

Ensure seamless communication between services within the pipeline.
Develop and Integrate Machine Learning Models.

Implement an MLOps pipeline.

Ensure Compliance with 3GPP Standards.

Provide a user-friendly Deployment and Visualization System.
Integration with existing 5G Core network components. X

Evaluate system performance under several network conditions.
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8. Main Functionalities

Dynamically train many models and deploy the best one;
Periodic training to avoid data drift;

Interact with 5G Core network functions in order to collect
and expose data;

Trigger model training through Nnwdaf_MLModelTraining
API call;

Receive model evaluation results through API callback;

Extract Netflow features from raw network data.

11



9. Use Case/Validation

We implemented one of the many use cases we identified.

Our use case relies on using live network data to:

network_processed_data.count

o Detect attacks:

o ldentify the type of detected attack.

We used the UNSW-NB15 dataset's raw data files.
Which allowed us to:

o Extract more than 50 Netflow features.

o ldentify 9 attack types.

o Analyze network data drift evolution.

12



10. Main Problems

4 )

We did not pick the best approach to receive
network data initially;

.

AN

>

3GPP 5G API's were extensive and with many
nested fields making it complex to map the
 nhecessary flelds;

AN

>
Feature extraction methodology wasn't straight
forward and required using limited-access and

undocumented tools.
\_ J
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11. Lessons Learned

|
i Dividing the raw data for streaming interfered with

the effectiveness of the feature extraction process.
\_

/' .

(Having more and higher quality data proved more
important than the ML methodology
\

AN

(The 3GPP standards for the NWDAF require further

refinement, especially the ML APIs standards
\ J

>
There are so many types of network packets that

creating a universal converter is extremely complex.
\ J
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12. Future Work

monitoring APl and integration
with the trigger for retraining

G O Implementation of the

O-
Deployment in Kubernetes o 8

Communicate with other NFs

when an attack is detected

° s % ﬁ 2
S‘ | I °.  Integration with real components
( : of 5G-Core
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